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152, Japan 
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Abstract. We have investigated the dynamics of retrieval pmcessg of an associative 
memory of the Hopfield type. For synchronous dynamics, we have generalized the 
theory of Amari and Maginu, which enables us to treat the intermediate processes of 
memory retrieval in terms of a few simple macrovariables, t o  the finite-temperature case 
The resulting phase diagram in the equilibrium limit agrees qualitatively well with that 
from equilibrium statistical mechanics. We have carried out Monte Carlo simulations to 
clarify the limit of applicability of their theory. We have found that their basic assumption, 
an independent Gaussian distribution of the noise term with a timedependent variance, 
is satisfied if the network succeeds in retrieval. When retrieval fails, the distribution of 
noise is non-Gaussian from very early stages of time development. For asynchronous 
dynamics, we propose a timedependent Ginzburg-Landau p G L )  approach, which simply 
expresses a downhill motion of the network in the free energy landscape. The resulting 
Row diagram in a phase space describes the behaviour of the network when it is close 
to equilibrium. 

1. Introduction 

Statistical mechanics has been a powerful tool to investigate equilibrium properties 
of neural networks of the Hopfield type 111. By exploiting the analogy with the Ising 
model, h i t  et a1 [2,3] successfully derived the free energy and equations of state 
to describe various macroscopic phases in the presence of thermal noise. The same 
method has been applied to solve the case of synchronous updating processes [2,4]. 
As has been shown by Peretto [SI, synchronous dynamics applied to the Hopfield- 
type network yields an equilibrium state corresponding to a slightly modified effective 
Hamiltonian. This fact enables one to apply the techniques of equilibrium statistical 
mechanics to the synchronous network. 

Dynamics of retrieval processes is more difficult to treat than equilibrium 
properties mainly because no general prescription corresponding to the B O h " m  
Gibbs framework is available. One therefore has to work ont a method appropriate 
for each problem. The significance of investigation of dynamics is never negligible in 
spite of such inherent difficulties. The dependence of the final equilibrium state on 
the initial condition can be clarified through dynamics. This means that we can learn 
the size and shape of the basin of attraction. Non-trivial behaviour of the network 
during the retrieval process, as will be shown later, is also clarified only by a direct 
dynamical treatment. 

For these and other reasons, several authors have proposed various ways of 
description of dynamics. Meir and Domany [6] used a layer-structured network in 
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which embedded patterns differ from layer to layer. For such a case, they showed 
that it is possible to derive a closed set of evolution equations of macrovariables. 
An asymmetric diluted network is another instance for which an exact analysis can 
be carried out [7]. In a more general case of the usual symmetric network with 
an extensive number of patterns embedded in it, it is necessary to introduce an 
infinite number of parameters to describe time evolution without approximations 
[8,9]. Riedel et a1 [lo] used an effective equilibrium Hamiltonian, related to the 
equilibrium free energy, to derive a compact set of differential equations. Homer et al 
Ill] instead treated dynamics directly in terms of the generating functional formalism. 
Under certain assumptions on the asymptotic form of correlation functions, they were 
able to reproduce the correct behaviour of the network in the initial and final stages 
of time development. 

Amari and Maginu [12] employed a signal-to-noise ratio analysis for a synchronous 
network. Under the assumption of independent Gaussian distribution of the noise 
contribution, they discussed the time dependence of macrovariables and the shape 
of the basin of attraction. Other investigations along similar lines have subsequently 
appeared [13,14]. An advantage of this type of theory is that the basic assumption 
is simple and clear so that one can verily it in rather straightfoonvard numerical 
simulations as shown below. A purpose of the present paper is to check the validity 
of the Amari-Maginu theory and generalize it to a finite-temperature case. We also 
propose a simple set of equations, the TDGL equation, to discuss the asynchronous 
dynamics. 

In section 2, we discuss the properties of a synchronous network with extensively 
many random patterns embedded by the Hebb rule. We generalize the Amari-Maginu 
approach to the finite temperature problem. A closed set of recursion equations are 
presented to describe the macroscopic time development of the network in the process 
of memory retrieval. In particular, the behaviour in the equilibrium limit is compared 
with the predictions of equilibrium statistical mechanics. We then show the results 
of our Monte Carlo simulations on the network with the aim to clarify under what 
conditions the assumption of Amari and Maginu of a Gaussian distribution of noise is 
satisfied. We turn to the asynchronous dynamics in section 3. When the network state 
is close to equilibrium, its time development may be described as a downhill motion 
in the free energy landscape. This idea can be realized as the ~ G L  (time-dependent 
Ginzburg-Landau) equation; we assume that the time derivative of a macrovariable 
is proportional to the derivative of the free-energy functional. The TDGL equation 
derived from the free energy functional by Amit er a1 131 turns out to describe well 
the final stages of memory retrieval in the asynchronous network. The results of this 
approach are compared with those in previous sections for the synchronous network. 
The final section is devoted to discussions. 

2. Retrieval processes for synchronous dynamics 

21. Recursion relations 

Let us consider a network of two-state neurons {S: = il},,,,,,, with a synchronous 
stochastic updating dynamics 

Prob(Sf+') = f ( 1  + $+' tanhphf) 
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where h: denotes the input to the ith neuron at time t: 

hj = J j j S j .  (2) 
j # i  

We embed P random patterns { E r  = *l}, ( p  = 1,. . . , P) according to the rule 

By the prescription (3), each of the embedded patterns is an approximate equilibrium 
state of the dynamics (1) if the temperature T = 1/p is sufficiently low [14J 

It is convenient to introduce a macrovariable, the overlap of the current network 
state with the pth pattern, 

Finiteness of mf in the infinite time limit would indicate a successful retrieval of 
the p th  pattem. Our task is thus to derive a recursion relation of mf (and another 
related macrovariable) to describe the macroscopic time development of the network 
from an initial state. Hereafter we restrict ourselves to the case in which only one 
of the embedded patterns is retrieved, which we choose as the first pattern ( p  = 1). 
Let us denote mi simply as mt. Without loss of generality, we can set 

E’ = (1,l) ..., 1). (5)  

The input (2) can then be divided into two parts, the signal and noise, 

where the first term in the final expression comes from the p = 1 contribution (signal 
for retrieval of the first pattern) in the intermediate summation, and the second term 
is the noise 

The noise N: represents disturbing effects from non-retrieved patterns ( p  2 2). 
To proceed further, Amari and Maginu [12] regarded the noise N,! as a random 

variable and assumed that it obeys a Gaussian distribution with a vanishing mean and 
a time-dependent variance U;. If terms in the summation on the right-hand side (RHS) 
of (7) were independent random variables (which is true for 1 = 0), the central limit 
theorem would apply to lead to a Gaussian distribution of N! in the limit of large 
N .  In general such a situation is not realized, however, since S: depends on the set 
{ E ; )  because of the updating processes (1) in previous time steps. Amari and Maginu 
nevertheless assumed a Gaussian distribution and investigated the consequences. As 
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we will see later, this assumption is approximately valid under certain conditions. 
We stress here that, even if the Gaussian assumption turns out to be valid, it is not 
because the central limit theorem applies but for some other unknown reasons. It 
is also important to note that they assumed that Nf obeys a Gaussian distribution 
independently at each neuron i at a given time step 1. 

The macroscopic overlap m,+l is now expressed by 

where ei is a normalized Gaussian variable defined independently at each i. We have 
taken the expectation value, symbolized by E[. . .], with respect to the stochasticity 
represented by (1). The last expression in (8) converges to the ensemble average of 
tanhp(m, + nlc;) with respect to the Gaussian distribution of ci  in the large N 
limit to yield 

It is necessaly to derive a recursion relation of U,, which is another macrovariable, 
to describe the strength of disturbance from non-retrieved patterns. The recursion 
relation of the variance can be calculated by evaluating the square of the noise N,! 
and taking account of the dependence of the current state Sj on the embedded 
patterns. This last dependence can actually be calculated by analysing the input in 
the preceding time step. The only point to be modified from calculations by Amari 
and Maginu 1121 is that one replaces the function sign(h:) by tanhph: reflecting 
finiteness of temperature. The result reads 

a:+1 = a + 2 a ~ m c t l m , h ( p m , , P u , )  + P Z ~ : h ( p m , , P 4 Z  (10) 

where 

The parameter a is defined as Q = P / N .  
The recursion relations (9) and (10) determine the macroscopic dynamical 

behaviour of the network. Numerical solutions of these equations reveal that, quite 
similarly to the zero-temperature case [12], the network successfully retrieves the first 
embedded pattern if 01 is small and the initial overlap is larger than a critical value 
mu(a). If a is large, any initial condition leads to a non-retrieval state m, + 0 at 
the final stages t - m. It turns out that a successful retrieval (m, > 0) is possible 
for 01 smaller than a,(T). The final overlap m, drops to zero discontinuously at 
ac, These properties in the infinite time limit are in agreement with those derived 
from the equilibrium statistical mechanics [3,4]. 

As shown in figure 1, Q, decreases continuously from 0.1597 at T = 0 and 
vanishes at T = 1. The critical capacity calculated by equilibrium statistical mechanics 
is also drawn in figure 1 for synchronous [4] as well as asynchronous [3] dynamics. 
One should note the qualitative resemblance of the three curves in figure 1. Our 
method is simple enough to use only the Gaussian assumption of the noise term N:, 



Relrievai dynamics of associative memoy 863 

and yet reproduces well the results from quite a different method, namely, equilibrium 
statistical mechanics. We stress qualitative similarity of the critical curves in figure 1, 
leaving the quantitative difference as a minor problem. We do not intend to claim any 
mathematical rigor of the final expressions (9) and (IO); these equations are useful 
approximations for the purpose of clarifying the dynamics of retrieval processes which 
cannot be treated by equilibrium statistical mechanics, especially about the early stages 
of time development. Some examples of such transient phenomena will be given in 
the next subsection. Close to the critical capacity a,(T), the assumption of Gaussian 
noise distribution may not work very well, which may he one of the reasons for 
the quantitative difference between our results and those of statistical mechanical 
calculations. 

T 

1.2 

1 .o 
0.8 

0.6 

0.4 

0.2 

0.0 

I -the extended Amar-Maginu I 
-Amit et al. [3] 

...-..Fontana.ri and K6berle[4] 

retrieval phase 

0.0 0.04 0.08 0.12 0.16 0.20 a 
Figure 1. Equilibrium phase diagram obtained from the generalized Amari-Maginu 
theory. The critical capacity oc decreases continuously from 0.1597 at T = 0 value and 
vanishes at T = 1. For reference, the critical capacity calculakd by equilibrium statistical 
mechanics is also given for synchronous 141 as well as asynchronous [3] dynamics. 

We remark here that (9) and (10) do not have a paramagnetic solution m, = 0 
and ut = 0, while the statistical mechanical approach yields such a state at high 
temperatures. This is understandable because, as will be discussed in the next 
subsection, the present method is likely to fail in the case of unsuccessful retrieval: 
we do not expect the Amari-Maginu method to predict the behaviour of the network 
outside the successful retrieval region. 

To see some of the dynamical aspects of recursion relations (9) and (lo), let us 
take the limit of low storage n -t 0. In such a limit, an equilibrium solution of the 
recursion relation is cr = 0 and m = tanh(pm), which agrees with the prediction 
of statistical mechanics [Z]. Thus the effects of non-retrieved patterns, which are 
represented by the variance U, vanish in the low-storage limit. In the low-temperature 
and small-n limit, the recursion relation reduces to 
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This equation indicates a very quick approach to the noiseless (U = 0) solution. 
Although the high-temperature region is outside the range of applicability of the 

present method, it may be of some interest to see what type of behaviour is derived 
within the Amari-Maginu framework. The recursion relations (9) and (10) in the 
high temperature limit p -+ 0 are expressed as 

Approach to the equilibrium value m = 0, cr* = a/ (1-  Pz) is written as 

m, = e-'Irmg U, = U + e-ztlTS, 

where mo and So are determined by the initial condition and T = l / logT. As T 
approaches 1, the relaxation time T is seen to diverge, a critical slowing down. The 
actual critical temperature depends upon a and is smaller than 1; the divergence of 
T at T = 1 would be a consequence of the high temperature approximation. 

2 2. Simulations 

We have carried out Monte Carlo simulations to check the validity of the 
basic assumption of the Amari-Maginu theory, namely, an independent Gaussian 
distribution of the noise term N: at each i. The number of neurons N was 5000, 
7000 and 9000. The parameter Q was chosen to be 0.08 and 0.20 for each N .  We 
have tried mu = 0.1,0.2, . . . ,0.9 as the initial condition. The temperature was set 
to zero. 

To see the distribution of the noise term, we have separated numerically the input 
hf to the true signal m, and the rest Nf as in (6). Strictly speaking, randomness 
or stochasticity of N /  comes from the randomness of {[r}. This means that we 
should generate many sets of random pattems and see the stochastic distribution of 
N: at a fixed i. However, generating very many sets of random patterns {Er},  of 
the order of lo4 sets for good statistics, and performing simulations for all of them 
require inhibitingly large computing efforts. We have instead taken statistics of N,' 
by varying i from 1 to N at each time step t for a fixed set of random patterns {cl].  
It is not obvious a priori that these two procedures amount to the investigation of 
the same quantities. However, the equivalence of the configurational (randomness) 
average and the spatial average in spin glasses [15] is an encouraging fact to justify 
of our simplified method of statistics. We have also checked by investigating several 
different sets of random patterns that the following results do not depend in any 
remarkable way on the choice of the set of random patterns. 

To characterize the noise distribution quantitatively, we have calculated cumulants 
of the distribution to fourth order. Fifth- and higher-order cumulants are difficult to 
calculate with satisfactory accuracy because such a calculation requires subtractions 
of high-order moments, which are large numbers, leading to larger statistical errors 
by losing significant digits. For this reason, our criterion is that a distribution is 
Gaussian if the cumulants of third and fourth orders are vanishing within statistical 
errors determined by the usual l/v% rule. 

Some of the results are shown in figure 2. Figure 2(a) represents the case 
N = 9000, a = 0.08 and mu = 0.5. The overlap m,  reaches a saturation close 
to unity after several time steps, a successful retrieval. The actual time dependence 
of the overlap was in excellent agreement with the Amari-Maginu prediction (9) 
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Figure 2. Time dependence of 
eumulants of the noise. T=O and 

represents the ith cumulant of the 
noise tenn. (0 )  01 = 0.08, mo = 
0.5 (b)  a = 0.08,mo = 0.1 (c) 
01 = 0.2,mo = 0.9 It is seen 
that only when the memorized 
pattern is successfully retriad 
as in (a), lhe third and footmh- 
order cumulanls stay in very 
small values, i.e. the Gaussian 
assumption is satisfied. 

N=9 WO. c; ( i  = 1, ..., 4) 

and (10). The first-order cumulant vanishes at all time steps while the second-order 
cumulant, the variance cr:, followed well the prediction of (9) and (10) and reached 
a steady state as soon as m, did. The third and fourth-order cumulanls stayed 
very small, effectively vanishing within statistical errors, at all t. These observations 
were shared by the smaller N cases, 7000 and 5000, with the same a and m,,. 
Figure Z(b) is for N = 9000, a=0.08, mu = 0.1. Retrieval apparently fails under this 
condition: the initial overlap mu is too small to warrant retrieval. The first- and third- 
order cumulants stay in a close vicinity of zero, while the second- and fourth-order 
cumulants grow rapidly from very early stages of time development. It should also 
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be added that significant size dependence of m, and U,  was observed in this case, 
and the prediction (9) and (10) was not followed well quantitatively by numerical 
data. Similar behaviour was found for the case N = 9OO0, a = 0.20, mu = 0.8 as in 
figure 2(c). 

Our conclusion obtained from checking data for all parameter combinations is 
that the distribution of noise is very close to be Gaussian when memory retrieval 
is successful. It is remarkable that the distribution is likely to be Gaussian at all 
time steps for successful retrieval cases. The noise 'anticipates' a successful retrieval 
from the outset of time development. We have also checked independence of noise 
Nt at each i by dividing the whole network into two parts with the same size, A 
and B, and looking at the covariance of Nf between i E A  and i EB. lb be more 
precise, we calculated the covariance Cov( N j ,  N:+,,,,2) by running i from 1 to N/2 
for simplified statistics as before. The result indicated a vanishing covariance for any 
values of the parameters within statistical errors. We therefore conclude that the 
Amari-Maginu theory describes the dynamics of the network quite faithfully when 
the memory retrieval is successful. This conclusion is supported also by preliminary 
data of simulations for finite-temperature cases. 

Another interesting behavioural feature of the network was found in the case of 
large values of mu, 0.9 for instance, and o( = 0.20. Although the memory retr ied 
fails for such a large a, and correspondingly the third- and fourth-order cumulants 
grow at final stages of time development, those two cumulants remain close to zero 
until a certain critical time step t, is reached; this is seen in figure 2(c). Beyond 
the critical time, the cumulants, in particular the fourth cumulant, increase rapidly. 
The critical time step, typically of the order of t ,  = 10, depends rather strongly upon 
the sample of randomness {<:} and system size N .  We could not see any clear 
systematic tendency, suggested by Amari and Maginu [12], of t,( N) going to infinity 
as N increases. Much larger N and more extensive analysis of sample dependence 
are required to settle this issue. 

It is not surprising that the simple Gaussian assumption fails if memory is not 
retrieved; the network would fall into a spin-glass state in such a case, which is likely 
to require a much more sophisticated treatment than the two-parameter theory. 

Before closing this section, let us remark that we do not claim to have confirmed 
the rigorousness of the Amari-Maginu theory in the case of successful retrieval. Our 
point is that the third- and fourth-order cumulants do not grow with time and stay 
very small if not strictly vanishing; it is impossible to prove a vanishing value by 
numerical simulations. Very small values, which are uniform (non-growing) in timc, 
would be sufficient for the validity of regarding the Amari-Maginu theory as a good 
approximation. 

3. TDCL approach 

A downhill motion of the network state in the freeenergy landscape is an intuitively 
appealing idea. The time-dependent Ginzburg-Landau (TDGL) equation is a 
phenomenological equation to express the downhdl motion. It is in general written 
for a macrovariable m as 

d m  1 af - = 
d t  t u  a m  
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where t ,  sets the time unit and f denotes the free energy functional written in 
terms of m. If we use the free energy functional calculated within the framework 
of equilibrium statistical mechanics on the RHS of (12), the resulting equation will 
describe the behaviour of the network near equilibrium. Actually, in the case of the 
infinite-range ferromagnetic king model, this type of approach is known to yield the 
exact evolution equation [16]. 

The free energy functional for the asynchronous network has been given by Amit 
et nl [3] under the assumption of replica symmetry. For a single-pattern retrieval, it 
reads 

dz in 2 cosh ,D( @z + m )  . 
- @-‘k 

Three order parameters appear in (13). The overlap m has the same meaning as 
in (4). The spin glass order parameter q denotes the degree of random freezing of 
the state of each neuron. The last parameter r represents the accidental overlap of 
the network state with non-retrieved patterns 

which bears a physical meaning similar to that of the variance U: of noise from 
non-retrieved patterns used in the previous section The TDGL equation for the free 
energy (13) is now 

We have assumed here that the time scale 1, is common to all three equations, which 
does not affect the final qualitative behaviour of the network 

As in the theory of spin glasses [lS], a steady-state solution of (14) is not in general 
a local minimum of the equilibrium free energy (13). As shown in figure 3, the free 
energy is at minimum for perturbations in m, but this is not the case for q and/or 
r. This difficulty seems to be originated in the replica trick used in the derivation of 
(13). Expressions involving a summation over two different replica indices, such as 

rpsqp6, acquire a factor n( a- 1) by the replica symmetry assumption rp6 = r, 
qPs = q, where n denotes the number of replicas. In the limit of n i 0, the factor 
n(n - 1) becomes negative, which would result in the inverted landscape of the free 
energy. 

Thus it would not to lead to meaningless conclusions if we invert the free energy 
along the direction of a negative eigenvalue of the curvature m a t h  

(15) 
a2 f la? a2 f l a d q  

a2 f laraq a2 f /aq2 
M = (  
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09 

Figure 3. The free cnergy landscape: (U) The variable q is fixed at qc (equilibrium value) 
and the free energy is depicted as a function of m and T. (b) The variable r is Bxed 
a1 rc (equilibrium value). We can see that a steady-state solulion of (U)) is no1 a local 
minimum of the free e n e w .  

evaluated at the saddle point. Note that the equation for m is  left intact since the 
free energy is always minimum with respect to this variable. For any combinations of 
the parameters CY and T, we have found that the matrix M has one positive and one 
negative eigenvalues. Let us choose the x axh around a saddle point as the direction 
of the eigenstate corresponding to the positive eigenvalue and y axis as that of the 
negative eigenvalue. We then use the modified ~ G L  equation 

We have set t o  = 1 for notational simplicity. Numerical solutions of (16) are 
transformed back to the representation in terms of r and q. 

We solved (16) for various initial conditions. The initial value of the overlap mu 
can be set arbitrarily between 0 and 1. There is no obvious choice of qo, and we 
tried a variety of yo to find that the results are hardly dependent upon this initial 
condition. In particular, y(t)  converges very quickly, as compared to m(t)  and r ( t ) ,  
to a common equilibrium value starting from a wide range of qo. This may imply that 
essentially only two macrovariables are sufficient to describe the dynamics of retrieval 
processes as was the case in the Amari-Maginu theoly for synchronous dynamics. The 
initial value for T is uniquely determined from the condition that the initial network 
state has a finite overlap only with the pattern to be retrieved. That is, since 

then for p 2 2, we have 
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Figure 4. Time evolution of the network in the m versus P diagram; (U) o( = 0.1, 
T = 0.3 (retrieval phase). There are two fixed-point altractors, one near m = 1 and 
another at m = 0. The former is a successful relrieval h e d  point while the latter 
represenu failure. The basin of attraction of the relrieval Kxed point is shown shaded. 
(6) ~i = 0.1, T = 0.4 (spin-glass phase). The only h e d  p i n t  is at m = 0. The whole 
phase space is in the basin of attraction of this spin-glass fixed point. 

We actually tried other values of rU because the flow diagram thus written enables us 
to understand the dynamics in a transparent way as shown below. 

Figure 4(a) displays the time development of the network by a set of arrows in 
the m versus 1' phase diagram for the case of a = 0.1 and T = 0.3. The spin 
glass order parameter q is fixed to an equilibrium constant for the reason mentioned 
above. Along the two solid lines, time derivative of one of the order parameters is 
zero, which means that the flow is either vertical or horizontal on the lines. There 
are two fixed-point attractors, one near m = 1 and another at m = 0. The former 
is a successful-retrieval fixed point while the latter represents failure. The basin 
of attraction of each fixed point is separated by a definite cuwe below which all 
points are attracted to the successful-retrieval fixed point. (We thank Nakamura for 
suggesting this type of analysis.) Apparently all physically realizable initial states, 
which have ru = 1, are attracted to the successful retrieval fixed point irrespective 
of mu. Simulations rather suggest that there is a finite critical mu below which 
retrieval fails [ll] as was the case for synchronous dynamics discussed in previous 
sections. We conclude therefore that the TDGL approach using the equilibrium free 
energy does not describe the initial condition dependence of the network behaviour 
in a convincing manner. This fact was somewhat expected because the free energy 
functional calculated within the framework of equilibrium statistical mechanics is not 
likely to dominate the network properties in the early stages of time development 
starting from an arbitrary non-equilibrium state. Only the final stages can be treated 
by the present approach. 

When the parameter is in the region corresponding to the spin glass phase, the 
Row diagram looks like figure 4(b) in which Q = 0.1 and T = 0.4. There is no 
crossing of the two cuwes dm/dt = 0, dr /d t  = 0, so that the only fixed point is at 
m = 0. The whole phase space is in the basin of attraction of this spin-glass k e d  
point. 

4. Discussion 

We have investigated the retrieval dynamics of the network of two-state neurons 
connected by the efficacy (3). For synchronous dynamics, the assumption of 
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independent Gaussian distribution of the noise term Nf is pointed out to have 
a crucial significance in clarifying the limit of applicability of the Amari-Maginu 
method. An advantage of this approach is that the basic assumption is clearly stated 
and hence is amenable to direct numerical verifications. Our Monte Carlo simulations 
reveal that this assumption is likely to hold, at least to a quite good approximation, 
if memory retrieval succeeds in the final stages of time development. The noise 
distribution deviates from Gaussian from very early stages if retrieval eventually fails. 
Therefore, at early and intermediate stages, the noise contains more information on 
the final result than the most important macrovariable, the overlap m,. 

Of course, the noise distribution has much more degrees of freedom than the 
single macrovariable m,, and one may be inclined to attribute this difference in the 
degrees of freedom to the difference in the amount of information. A real surprise 
is, however, that the noise has actually only one degree of freedom, the variance U:, 

in the case of successful retrieval. This fact has been found numerically. We do not 
claim that this is always the case in a strict sense; higher-order cumulants may be 
very small but non-vanishing. An important point is that the higher-order cumulants 
are observed to stay very small uniformly in time. This uniformity in time enables 
us to treat the dynamics to a very good approximation within the framework of the 
present theory. 

Amari and Maginu [I21 tried an improvement of their theory by allowing a non- 
vanishing mean of the Gaussian noise distribution. The result, however, was not 
impressive because, first, the final state became independent of the initial condition 
m, in the whole range 0 < mu < 1, and second, the equilibrium value m showed 
continuous dependence on a. Such behaviour is in conflict with simulations as shown 
in section 2. It is a future problem to clarify why such an apparent improvement leads 
to less reliable results. A hint may be that appropriateness of approximation is not 
necessarily a monotonic function of the degree of approximation, as is often the case 
for asymptotic expansions. We note in passing that the Amari-Maginu expressions 
for the macrovariables btEl  and ut=,, where b, is the mean value of the noise, 
agree with the exact formula for the first few steps derived in [SI. 

We generalized the Amari-Maginu theory to the finite-temperature problem. 
The result on the equilibrium phase diagram agrees qualitatively well with that 
from statistical mechanical calculations. The slight quantitative difference may be 
attributed to a degraded Gaussian approximation near critical capacity. The present 
formulation is quite simple in its principle and yet yields fruitful information on 
dynamical processes as well as on equilibrium properties. Even in comparison with 
other approaches to dynamics of retrieval processes [6-11,13,14], the present method 
is unique in its simplicity and generality. Only the assumption of Gaussian noise 
distribution is sufficient to derive all necessary equations which describe the network 
behaviour in a reasonable manner. 

The network properties near equilibrium should be characterizable by the downhill 
motion in the free energy landscape. The phenomenological TDGL equation represents 
such a situation. The flow diagram obtained from TDGL equation (figure 4) reveals 
global motions of the network near equilibrium. 
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